Let $(G, \cdot)$ be a group and $X \lhd G$ and $Y \lhd G$ be two normal subgroups.
I will show this in two steps:
- Show that $X \cap Y$ is a group
- Show that $X \cap Y$ is a normal group of $(G, \cdot)$
Intersection of two subgroups is a subgroup
Theorem: $(X \cap Y) \leq G$
Proof:
$X \cap Y$ is not empty: $e_G \in X \land e_G \in Y \Rightarrow e_G \in (X \cap Y)$
$X \cap Y$ has inverse elements. Let $a \in (X \cap Y)$. As a is in $X$ and $X$ is a group, $a^{-1} \in X$. The same is true for $Y$. So: $\forall a \in (X \cap Y) \exists a^{-1} \in (X \cap Y): a \cdot a^{-1} = a^{-1} \cdot a = e_G$
$\forall a,b \in (X \cap Y): a \cdot b^{-1} \in (X \cap Y)$, because both, $a$ and $b^{-1}$ are in $X$. As $X$ is a group, the result has to be in $X$. Same argumentation for $Y$. Then the result is in $X$ and $Y \blacksquare$
Intersection of two normal subgroups is normal
First the definition of a normal subgroup:
Theorem: $(X \cap Y) \lhd G$
Proof:
$X \cap Y$ is a subgroup of $G$ as I have proved above.
$\forall n \in (X \cap Y) \forall g \in G: g \cdot n \cdot g^{-1} \in X$ and $\forall n \in (X \cap Y) \forall g \in G: g \cdot n \cdot g^{-1} \in Y$
$\Rightarrow \forall n \in (X \cap Y) \forall g \in G: g \cdot n \cdot g^{-1} \in (X \cap Y)$
$\Rightarrow (X \cap Y) \lhd G \blacksquare$